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ABSTRACT 

The Finite Element - Transfer Matrix (FETM) method has been developed to reduce the 

computations involved in analysis of structures. This widely accepted method, however, has 

certain limitations, and does not directly produce reduced models for control design. To overcome 

these, a modification of FETM method has been developed. The modified FETM method easily 

produces reduced models that are tailored toward subsequent control design. Other features of this 

_ _  _. method are its ability to (i) extract open loop fi-equencies and mode shapes with less computations, 

(ii) overcome limitations of the original FETM method, and (iii) simplify the design procedures for 

output feedback,constrained compensation, and decentralized control. 

- -_ 
-_ - 

_. - _  - -- - 

This semi annual report presents the development of the modified FEW, and through an 

example, illustrates its applicability to an output feedback and a decentralized control design. 

4 



NAG4422 - 
--- 

I. INTRODUCTION 

- 

A.Yousuff 

The objectives of this research are to develop an algorithm to produce reduced models of 

structures and to integrate a controller synthesis scheme in this algorithm. This semi annual report 

describes the status of the research. Major part of the research has focused on the development of 

the reducedmodeling procedure. This is based on the Finite Element - Transfer Matrix method. The 

second objective, namely, the controller synthesis procedure, has been dealt with only 

preliminarily. Numerical investigations have been carried out to study the-applicability of the 
. _  - - 

reduced modeling procedure in control design. 

The Finite Element - Transfer Matrix (FETM) method has been developed to overcome the 

problem of large size matrices that are encountered while modeling flexible structures within 

acceptable accuracy. The main advantage with the FETM method is that it yields a reduced set of 

equations by operating at (finite-) elemental level. The advantages offered by the FETM method are 

not fully utilized in the area of control design - this is since the FETM method has been developed 

primarily for open loop structural analysis. The method developed in this research mOdifies the 

FETM method to include control issues. The essential feature of the modified FETM method is its 

ability to model the entire structure in mms of any selected degrees of freedom. The choice of these 

dof is to be determined from the Control objectives. Other features of this method are its ability to 

(i) produce reduced ordcr models for control design, (ii) extract open loop frequencies and mode 

shapes with less computations, (iii) overcome the limitations of the original FETM method, and 

(iv) simplify the design procedures for output feedback, constrained compensation, and 

decentralized control. 

With this perspective, this report is organized as follows: In Section II, we briefly review 

the original FEW method, point out its limitations, and present the modifications developed in this 

research. We will also offer a numerical example to illustrate the procedure. In Section III, we 

present our preliminary analysis of this procedure's applicability to control design and use an 
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example to illustrate the suggested method. We will show an output feedback design and a 

decentralized control design. Section IV concludes this report by summarizing our findings, and 

- 

. 

raising issues that need to be addressed in future research. The findings of this research have been 

presented at two conferences and copies of these papers are included in Appendix. 
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11. REDUCED MODELING BY FETM METHOD 

The structural analysts, owing to the ever persistant problem of large size matices, have 

developed the FETM method. In the standard finite element analysis, the stiffness and mass 

matices are computed for the structure, and the natural frequencies are then determined from an 

eigenvalueqroblem. ~ The FETM method does not directly solve the eigenvalue problem. Instead, a 

transfer matrix, which depends on natural frequencies, is calculated which relates the displacements 

and forces at right boundary to those at left boundary of the structure; The correct natural 
-~ - -~ 

- frequencies are then extracted by iteration when the boundary conditions on left and right edges of 

the structure are specified. One of the advantages of the FETM method is that it yields a reduced 

set of equations by operating on the structure at the (finite-) elemental level. Another attraction of 

this method is that it offers a straightforward means of substructuring. 

The advantages offered by the FEW method are not fully utilized in the area of control 

design. The FETM method can be modified to incorporate the mission (control) objectives at the 

modeling phase. This is achieved by first identifying the dof based on the sensor/actuator locations 

and mission objectives, and then by calculating a transfer matrix that relates these dofs to the rest of 

the dofs (i.e, instead of relating the displacements and forces at the boundaries; see below for 

details). This method is particularly suitable for decentralized control, output feedback, and 

constrained compensation designs. The modified FETM method eliminates the limitations of the 

original method, while still offering considerable computational ease. 

With a brief mathematical review of the FETM methud, we present our modifications in what 

follows. A numerical example is included herein to illustrate the procedure. 
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2.1 Review of FETM Method* 

The transfer matrix method is generally associated with the concept of stiffness. Pestel and 

kchie[  13 demonstrated that, for one-dimensional structural members such as beams, the transfer 

matrix could be derived from the stiffness matrix. Dokainish[2] was the first to suggest a combined 

FETM method. He recognized that the transfer matrix method could be extended to 

two-dimensional structures by deriving the transfer matrix for a plate strip from the corresponding 

stiffness matrix. Since the publication of Dokainish's paper in 1972, several authors (notably, 

13-73) have proposed refinements and extensions of the FETM method. All of these authors derive 

the transfer matrix from the stiffness matrix in much the same fashion as Dokainish. This derivation 

is summarized below. - 

- - -  
__ 

_- - -  _. -- - 

If a dynamic stiffness matrix S is defined as S = K - o 2 M where K is the stiffness matrix, 

M the mass matrix, and o a natural frequency of the structure, then the equations of motion may be 

written as 

sq = f. (2.1) 

Here q are the nodal displacements, and f are the nodal forces. Considering now the ith 

substructure within the structure, eqn(2.1) may be partitioned as 

The subscripts L, I, and R refer to quantities on the left boundary, in the interior, and on the right 

boundary of the substructure. 

* Due to appropriateness, we reproduce Section 2 of [9] with minor modifications in the frst half 

of this section. 
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For free vibration, there are no forces on the interior; i.e., fI = 0, (valid for open loop 

analysis, and not for closed loop analysis which may involve active force actuators located at 

interior nodes). This information is used to eliminate UI from eqn(2.2) which produces the 

condensed set of equations 

-~ 

where SLL, SLR, SRL, and SRR involve the submatrices of the dynamic stiffness matrix S in 
.._ . - - _  - 

eqn(2.2). The transfer matrix for t h s t h  substructure Ti is then found by manipulating eqn(2.3) to 
- 

yield 
- 

or, simply, 

- .  

(2.4a) 

(2.4b) 

For the adjacent (i+l)th substructure, equilibrium and continuity of displacements require that 

XL. = "Ri (2.5) 
1+1 

Equations (2.5) and (2.4b) are combined to give 

X = T. 1+1 T. 1 XL. . (2.6) I 
Ri+l 
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where XN and XO are the "state" vectors on the extreme right and left boundaries of the entire 

structure. 

The derivation of the transfer matrix fiom the dynamic stiffness matrix requires the inversion 

of the submatrix SLR as shown in eqn(2.4a). In a strict sense, this inversion is possible if and only 

if SLR is a square nonsingular matrix. However, SLR is a square matrix only if there is an equal 

number of nodes (actual dof) on the right and left boundaries of the substructure. Moreover, if the 

- _.- - - - ._ 

- 

-- 

structure includes anflgid m y  modesand the dynamic stiffhess matrix is evaluated at the rigid 

body (zero) frequency, then SLR may be singular even if it is square, and even eqn(2.3) may be 

unobtainable. For simplicity however, we will focus only on flexible modes. Thus, the submatrix 

SLR cannot be inverted in general. Therefore, the above formulation of combined FETM method is 

only applicable to models which have the same number of nodes on all substructure boundaries. 

Recognizing that rectangular transfer mamces could occur in practice, Pestel[8] proposed 

using a left-inverse of SLR This is possible only if the number of nodes on the left boundary of a 

substructure is equal to or greater than the number on the right boundary. This restricts Pestel's 

approach to stmctmd models in which the number of nodes on the substructure boundaries 

decreases monotonicdly from one exterior boundary to the other. As suggested by Degen, 

et.aZ.,p], a frrrther extension of pestel's procedure for rectangular transfer mamces would be to 

use a generalized inverse, rather than a left-inverse of SLR This however introduces additional 

approximations into the derivation of the transfer matrix from the stiffness matrix. More recent 

developments to overcome these limitations has been reported by Degen, et.e2.,[9], employing a 

mixed finite element formulation. In [9], the energy expression is obtained as a Reissner functional, 

which allows the governing equations to be obtained in mixed form, that is, as a combination of 

10 
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/ stresses and displacements. This formulationpennits the boundaries of a particular substructure to 

have different number of dof "within certain limits"; the limits being that the number of the nodes 

on the right boundary is not too large relative to the number on the left boundary. Hence, the 

limitations of the original FETM method 11-73, though reduced in [8,9], are not completell, 

2 2 
Kll-a 2 T  M1l K12-0 2 M12 

eliminated. 

= 0, 

2.2 Modification of the FEW Method 

All the above methods [l-91 have been developed - for open loop (free vibration) analysis. A 

control engineer, however, is more concerned with the closed loop design and analysis, and 

requires an appropriate reduced model of the structure. FGne of the above methods yield reduced 
-- -~ .. - 

-- - - models conveniently. Moreover;in order to control the structure, actuators may be located at - -- 

interior nodes of the structure, invalidating the assumption fI = 0 used in deriving eqn(2.3). Thus, 

in order to address the issues of unequal number of dof, development of appropriate reduced 

models, and non-zero (feedback) applied forces at interior nodes, suitable modifications of the 

FETM method are needed. These modifications, developed during the current investigation, are 

now reported. 

Freauencv Determination: First, we present the modified FETM method to calculate the 

natural frequencies. Consider the frequency determination by the conventional finite element 

method: one solves the following equation which is obtained after enforcing boundary conditions, 

to0btainthcfieqy~cy. 

(2.8a) 2 (np) 4K-o MI = 0 ; K,M e R 

Partition cqn(28a) as 

(2.8b) 

n1 being quite arbitrary for now. (Later, we will use the control objectives to determine nl). Then, 

11 
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assuming that [K11-0 2 M11] is nonsingular, eqn(2.8b) can be written as 

and the frequency can be extracted from this equation. 

Reduced Model from Assembled Equations: We will now relate the development 

(2.8a)-(2.9) to the analysis of the homogenoeus system 

M4t) + Kq(t) = 0, q E Rn. (2.10) 

As usual, assuming a harmonic solution, we get 

-._ - . __ 

32.11a) - 2  [K- 0 MIqw = 0, 
- which in partitioned form is written as - 

(2.11b) 

Using eqn(2.11 b) we obtain 

establishing a relationship between ql(t) and q2(t). Hence, eqn(2.1 IC) yields 

where 

(2.12) 

(2.13a) 

(2.13b) 

Note that the teduced model' (2.13a) of dimension n2 st i l l  represents the original 'large model' of 

dimension n, with the dof q1 absorbed/msferred into 92. The frequency must satisfy 

F 2 2  +KT 12 T 12 (a)] - CO'[%~+I$~T~~(O)] I = 0, (2.14) 

12 
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which in view of eqn(2.13b) is the same as eqn(2.9). Therefore, it is possible to extract the 

frequencies (and the mode shapes using eqn(2.12)) of the original system (2.10) from the reduced 

\ 
- 
-- 

model (2.13a), by transferring the ql-information into 92. 

It is in order now to make the following observations. The system representation (2.10) is 

obtained after enforcing the boundary conditions, and represents a homogeneous system. 

Eqn(2.10) represents the 'assembled' set of equations, and hence is of large order, i.e., n may be 

quite large. Since n is large, either n1 and/or n2 may still be large - if n1 is large, then the matrix 

being inverted in eqn(2.12) is large; if n2 is large, then the eigenvalue problem (2.13a) still 

invaves large matrices. This approach (as presented thus far) operates only on the assembled 
- -  -_ 

- - equations, and not at an elemental levei as proposed by Dokainish. Therefore, we would like to - 

develop a method that operates at the elemental level - and hence, less calculations - which would 

yield the same reduced model (2.13). 

Reduced Model from Elemental Eauations: We will follow the method similar to that of 

Dokainish with a few modifications. We will consider a free(no applied forces) plate vibration 

, 
0 1 2  N-2 N-1 N 

problem for illustration. Consider Stripl. The strip itself may contain a number of elements, whose 

equations of motion may be assembled together to yield the following equation of motion for 

smp1. 

0 1  Fr, 1 
(2.15) 

13 
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where the n1 dimensland variables q1 1 are h e  free dof at the left section (boundary for Stripl), 

obtained after enforcing the boundary conditions. (This is different from Dokainish's 

approach wherein the boundary conditions are not enforced at this step). Since q1 1 are the 

free dof, there are no external forces, leading to '0' at the right hand side of (2.15); 

qr,l ("2 dimensional) are the free dof at the right section. Since (2.15) is the equation of 

7 

motion for Stripl by itself, Fr,l represents the internal forces at the right section; 

top and bottom boundaq conditions are also enforced. The top-left and top-right boundary 

conditions may be quite different - (This totally eliminates the limitations of the original FETM 

method), and n1 need not be equal to n 2  
.- 

- - - 

, In the absence of external forces, the motion of the plate will be harmonic. Thus, similar to the 

derivation of eqn(2.12), we get 

(2.16a) 

where 

m: Eqn(2.16b) requires an inverse of an (n1,nl) matrix which is always square. We assume the 

existense of its inverse. 

With the relationship a16) available, Q l(t) can be eliminated from (2.15) to yield 

where, 

(2.17a) 

(2.17b) 

Similarly, with Strip2 under consideration, using continiuity conditions (q1 2=qr 1) and equiibrium 
9 

conditions (Fl2=-Fr I), and by using (2.17) one gets 
14 



(2.19a) 

where 

Finally, with eqn(2.19) substituted in the equation of motion of Strip2, we get 

.- 

where, 

(2.20b) 

(2.2oc) 

We pause for a moment now to point out that the same model (2.20) could also be obtained 

by first assembling the equations of motion of Strips 1 and 2, and then eliminating q1 Y l(t) and 

q12(t) from it. Hence, eqn(2.20) is a reduced model for Strips 1 and 2 assembled together, but 

obtained by operating at'the elemental level. 

One can now proceed similarly and obtain a model, using Strip3, in qr,3 coordinates only as 

&,$?,3(t) + %,3Sr,30) = F*,3(t). (2.21) 

Or, one could start from the right boundary (StripN), eliminate ~ S J  and obtain a model for 

StripN in terms of qla and F1 N, and move left to StripN-1, ..., and similarly to Strip5 At the end 

of this, one would have 

9 

Ml,&(t) + K1,5q1,5(t) = F1,5(t)* (2.22) 

Now consider Smp4: 

(2.23) 

15 
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Assuming that there is no applied force along the right edge of Strip4, we get Fr 4 = - F1,5 , and 

the continuity condition qr 4 = 915. Thus, from eqn(2.22) and eqn(2.23), we get 
3 

%,4 = *rl,4(o)ql,4- (2.24) 

Now, if there is some external force vector P1,4 acting along the left edge of Strip4, then 

F1,4 = p1,4 - Fr,3+ (2.25) 

Therefore, combining eqns. (2.21), (2.24), (2.25), and (2.23), we finally get 

M1,4%,4(t) + K1,4q1,4(t) = p1,4. - 42.26) --- - -  - 
~ 

The model (2.26) represents the entire structure, with the boundary conditions taken into account. 

The dimension of the model is "4, the number of free degrees of freedom along the left edge of 

-- - -  -- - 

Strip4. If P14 is zero eqn(2.26) becomes a representation of a homogeneous system. 
9 

Note that, when there are no external forces present, we can obtain a reduced model of the 

structure in terms of any intermediate dof. Hence, if there is external load along the right edge of, 

say, ith strip, then one gets a model as 

(2.27) "i 
Mr,$irj(') + Kr,iqr,i(t> = Pr,i ; q r j  e R - 

Now suppose that only n2i external forces (Pzr,i), of the possible ni, are applied at this 

n2i e R ; nli+n2i = ni "li . 
q1r,i E , 92r,i 

It is then possible to reduce (2.28) further, by eliminating qlr,i, to obtain the following model of 

order n2i. 

(2.29). 
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2.3 Example: Simply SuDported Beam 

In order to present the application of the proposed method and its relation to the FETM 

method let us consider an output feedback control of a simply supported beam shown below. It is 

desired to control the linear displacement and linear velocity at point?, by using the linear force 

actuator (f) located at point2. The available sensors measure the linear position (w2) and the linear 

velocity (62) at point2. In this Section, we only develop a reduced model and compute the natural 

frequencies of this beam, the control design is deferred till next Section. The conventional finite 
.. _ _  - _ _  

- 
._ p : rmus density per unit area 

E : Modulus of elasticity 
I : moment of inertia 

A : cross-sectional area - - - 

f 

1 3 

It-------'- 'I 

NumericalYalues: L = 1; PA= 420; E1 = 1. 

element method w d  yield a model containing 4 dof, namely el, €12 w2, and €13. Assuming that 

this model is too large for subsequent calculations, we wish to obtain a reduced model. We proceed 

as follows. 

For simplicity, divide the beam into two elements as shown. The conventional FETM 

method (intended for analysis and not for control design) would first develop transfer matrices - 

assuming some numerical value for the natural frequency - that relate (02w2) to (el,wl), and 

(e3,w3) to (O2,w2). Then it would obtain an equation relating the dof (03,w3) at the right 

17 
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boundary to those (B1,wl) at the left boundary. Finally, it would enforce the boundary conditions 

at the left and right boundaries in  this equation and iterate on the assumed frequency to extract the 

actual frequency. This procedure is accomplished without regard to the control objectives and 

sensor/actuator locations. Moreover, this procedure does not yield a convenient reduced model for 

subsequent control design. The following steps illustrate the proposed FETM method. 

Step 0: Determination of critical dof. 

Since the proposed FETM method is capable of producing reduced models in terms of any dof, the 
- 

dof appropriate to the control objectives and sensor/actuator locations must be determined. In the 

example%der consideration this dof is w2, the linear deflection at Fint2.  

Step 1: Element 1. 

._ . - - _  

- - 

Write the cubic-beam model for Element 1 with the boundary condition wl=O enforced. Assume a 

value for the frequency a, and eliminate el dof using the transfer matrix method. This gives a 

model of Element 1 in terms of (e2w2). 

-2: Element2. 

Write the model for Element 2 (with w 3 4 )  and eliminate e3 as above, using the same assumed o. 

This gives a model of Element 2 in terms of (eZ,wz). 

Reduced Model in terms of w 2  

Combine the models in Steps 1 and 2, to develop a model of the entire beam in terms of (e2w2). 

Eliminate e2 from this model as above, using the same a. This gives a model of the beam in tern 

of only w2, which is the dof that we wish to control. 

18 
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Clearly the reduced model is function of the assumed frequency. The model obtained in Step 3 can 

be claimed to be a reduced model only if the assumed frequency is one of the frequencies of the 

beam. Hence, Step 4 is required. 

Step 4: Extraction of frequencies. 

Evaluate the determinant of [KR-o’MR] for the same assumed value of o. If the determinant is 

zero, then the assumed frequency is one of the natural frequencies of the system; if not, the 

assumed frequency should be updated and Steps 1 through 4 repeated until the determinant 

vanishes. (Currently, a modified secant method has been adopted for this updating scheme, and it 

works fairly efficierrdy). For this example, the four fundamental frequencies were computed to be 
- _ _  

- 0.48, 2.15, 5.32, and 10.2 rdsec.  - 

An interactive program has been developed on IBM PC/XT using FORTRAN which solves 

for the natural frequencies of an abitrary beam with arbitrary boundary conditions employing the 

modified FETM. This program can compute the fiequencies of a beam with even arbitrary 

intermediate boundary conditions such as, a hinge at some intermediate point - a situation wherein 

Dokainish’s method is not applicable. 

19 
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One of the problems encountered in designing a controller for flexible structures is the 

'dimension problem', if one chooses to work with ordinary differential equations. The standard 

finite element method yields models consisting of many degrees of freedom, requiring more 

computer memory than is available for control design. The conventional FETM method, though 

uses less number of equations, does not yield models of lower dimensions suitable for control 

design. The modified FETM method, as explained above, produces reduced models with due 

consideration to control objectives7-One might then use hisher favorite method to design a 
_ _  ._ - 

-- . -  - .  - -- controller based on these reduced models. -. 

One such approach would be to cast the problem in state space domain, Given the reduced 

model of eqn(2.29), its state space realization can be obtained as 

where YR define the variables to be controlled and ZR are the measurements. Note that, for a given 

control problem, in order for YR and ZR to be defined properly it is important to choose the dof qR, 

and hence XR, appropriate ly. Once eqn(3.1) is obtained, it is then possible to employ any of the 

(3.2) 

where % is the order of the desired controller. Depending upon the type of controller sought the 

parameters { Ac, FR, GR, E,) can have different structures; for example, in an output feedback 

control scheme a l l  parameters except Ec would be zeros. 
20 
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Having obtained the controller, the evaluation of this controller has to be achieved only with 

respect tothe actual full order model of the system. However, since the full order model is assumed 

to consist of many degrees of freedom, an efficient means of evaluating the controller is needed. 

This problem is being investigated jointly by Dr. Leon Bahar of Drexel University and the author of 

this report, employing a nested procedure for computing matrix exponential. Alternately, one might 

predict the performance of the controller by using only the reduced model (2.29), if an appropriate 

procedure could be developed. This issue is also under investigation at Drexel University. 

The papers included in Appendix illustrate two controller design methods: (a) an output 

feedback design, and (b) a decentralized control design. Both these methods are based on the 
.. - - 

Linear QjBiadratlc Regulator approach. - 

21 
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Iv. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE- 

RESEARCH 

In summary, during the first half of this research support, we have developed a modified 

FETM method that is capable of producing reduced models of flexible structures to ease the 

subsequent design of controllers. Unlike the conventional FETM method, the proposed method 

does not require equal number of dof at each section, i.e., at edges of each strip. Moreover, this 

procedure does not involve generalized inverses. More significantly, the reduced models produced 

by this method are tailored toward the control design. The applicability of this method to controller 

design has been iluustrated through an example. 

- 

- 
-_ 

- ._ 

The progress of this researchhas raised several Issues that need to be addressed: 

(1) During the development of the reduced model, the inversion of a matrix involving 

submatrices of the stiffness and mass matrices is assumed. Precise conditions under which this 

assumption is valid needs to be established. Currently it is believed that if the assumed natural 

frequency does not coincide with the frequency of the particular strip under consideration, then the 

matrix is invertible. This belief has to be formalized. 

(2) The iterative numerical scheme employed in the extraction of the natural frequency is a 

modified secant method. This scheme works quite efficiently for the example considered herein. 

We believe that the scheme could be accelerated by using the results of the above Issue #l. 

(3) Since the reduced model (2.29) depends upon the frequency, each natural frequency 

yields a diffemt reduced model, and one could conceivably obtain many reduced models. This 

raises the question of which one (or which few) of the natural frequencies are to be used for the 

generation of the reduced models? In order to answer this question one needs to determine a priori 

the 'significant' frequencies, such as those identified by modal cost analysis[ lo]. This issue has to 

be resolved for the proposed method to be a feasible controller design scheme. 

(4) The COntrOUCT design b a d  upon the proposed method necds to be explored. currently, 

we have used an example to illustrate our thoughts on this design technique. We believe that, since 

tha reduced model is directly related to the full order conventional finite element model, in terms of 
22 
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the frequency, the stiffness matrix, and d e  mass matrix, the performance of the controller with 

respect to the full model could be predicted. In particular, the stability of the overall closed loop 

system could be predicted; infact, for the example considered in the first paper of Appendix, one 

/ - - 

could guarantee stability fo the system for all bandwidth controllers. The stability properties of 

matrix second order systems would naturally be used here. 

(5) An important requirement of any control design is the robustness of the controller. This 

issue needs to be addressed in future research. 

23 
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E & S  The Finite Element - Transfer Mamx (FEThI) method has been developed to reduce the 

computations involved in analysis of structures. This widely accepted method, however, has 

certain limitations, and does not directly produce reduced models for control design. To overcome 

these, a modification of FETM method has been developed. The modified FETM method easily 

produces reduced models that are tailored toward subsequent control design. Other features of this 

method are its ability to (i) extract open loop frequencies and mode shapes with less computations, 

(ii) overcome limitations of the original FETM method, and (iii) simplify the design procedures for 

GThis semi annual report presents the development of the modified FETM, and through an 

- -- -I - - _  output feedback,constrained compensat i~~~_~~~d-dd~_ntr~ized control.2 _ -  
_- __ __--- -- _ _  

example, illustrates its applicability to an output feedback and a decentralized control design. 

en&/G APAd9-l. 
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